
A Client-Server Architecture for State-Dependent Dynamic
Visualizations on the Web

Daniel Coffman, Danny Soroker, Chandra Narayanaswami
IBM T.J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532

{coffmand, soroker, chandras}@us.ibm.com

Aaron Zinman1
MIT Media Lab

20 Ames Street, Cambridge, MA 02142

azinman@media.mit.edu

1 This work was done while at IBM TJ Watson Research Center

ABSTRACT
As sophisticated enterprise applications move to the Web, some
advanced user experiences become difficult to migrate due to
prohibitively high computation, memory, and bandwidth
requirements. State-dependent visualizations of large-scale data
sets are particularly difficult since a change in the client’s context
necessitates a change in the displayed results. This paper describes
a Web architecture where clients are served a session-specific
image of the data, with this image divided into tiles dynamically
generated by the server. This set of tiles is supplemented with a
corpus of metadata describing the immediate vicinity of interest;
additional metadata is delivered as needed in a progressive
fashion in support and anticipation of the user’s actions. We
discuss how the design of this architecture was motivated by the
goal of delivering a highly responsive user experience. As an
example of a complete application built upon this architecture, we
present OrgMaps, an interactive system for navigating
hierarchical data, enabling fluid, low-latency navigation of trees
of hundreds of thousands of nodes on standard Web browsers
using only HTML and JavaScript.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Patterns (e.g., client/server, pipeline, blackboard).

H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – Web-based interaction.

General Terms
Performance, Design, Human Factors.

Keywords
Rich Internet Applications.

1. INTRODUCTION
Enterprise applications are moving to the Web for a variety of
reasons, including ease of deployment, manageability and
consistency and security of enterprise data. Large monolithic
applications are also being decomposed into Web-based services
so they can easily be combined with other services. Transitioning
an enterprise application into a responsive and scalable Web
application is not straightforward when it demands non-trivial
amounts of computation, memory, bandwidth, and other scarce
resources. This challenge is further exacerbated when large
quantities of data have to be presented visually and altered
dynamically as the user’s context changes.

Achieving the performance to which users have become
accustomed on traditional applications requires new frameworks
and methodologies in the Web client-server model. In this paper
we present one such endeavor for the display and navigation of
layered hierarchical data. We motivate changes to a traditional
application architecture, in which the application runs completely
on the client’s machine with any server acting only to provision
this application with data; we seek to achieve high-performance
inside any standard Web browser using common technologies.
Our client-server model performs several orders of magnitude
faster compared to a direct port of a traditional model, without
sacrificing dynamic behavior on the client.

An important consideration in designing high-performance Web
applications is the partition of labor between client and server,
both in processing and transmission of data. Towards one end of
the spectrum, some enterprise applications, such as those used in
the interactive exploration of large-scale data sets, push large
amounts of data to the client to distribute the computation away
from central data-centric servers. Such an approach is not yet
plausible in the modern Web browser; some of the strongest
limitations include single threaded virtual machines, too much
heterogeneity in (the lackluster) performance and capability of
native graphics functions, overhead with AJAX-based network
I/O, and a DOM model optimized for incremental flow of text
rather than specialized drawing technologies and atomic
animation. In other cases, even if the browser had access to
onboard graphics accelerators and bandwidth was plentiful,
enterprises may not wish to send the raw application data to each
user’s browser for security reasons, preferring instead to send
intermediate forms of processed data that are less revealing. These
issues and more are particularly problematic when trying to
support even more constrained clients such as mobile phones
using the same HTML and JavaScript as for the desktop.

We tackle these performance issues in the context of applications
that support visualization and interactive navigation. The concrete
application we discuss here is called OrgMaps, whose goal is to
visually map hierarchical organizations with the superposition of
additional data (visual mashups). OrgMaps, shown in various
figures in Section 2, permits users smoothly to navigate the
structural neighborhoods of individuals within the organization –
their department, reporting chain and so on – through zoom and
pan operations. Visually overlaying data on the organization
structure is often highly informative, e.g., seeing the distribution
of children and teachers in an elementary school who have had the
flu this season. OrgMaps belongs to a class of applications we call
Enterprise Mashup Substrates, in which enterprise data is

presented visually in a common form to act as a generic substrate
for overlaying associated information.

One of the fundamental challenges in building OrgMaps was
scalability: making it perform well for large organizations with
hundreds of thousands of individuals. Our initial approach of
sending the organizational data to the browser for rendering did
not perform well for organizations larger than a few hundred
members for reasons cited above, which are discussed in more
detail in section 4.2. We then considered approaches used in
graphics rendering for thin clients where texture maps (e.g.,
games) and pre-rendered tiles (e.g., Google Maps) are often used
instead of more exact object representations to speed up
rendering. A major roadblock in our visualization was the
inability to use static pre-rendered image tiles. Static tiles prevent
arbitrary zoom levels, do not keep up with dynamic nature of the
input data being concurrently modified, cannot support fine-
grained access controls, and cannot flexibly support view-specific
morphology. Instead, we looked to a tiling methodology where
user-specific tiles are rendered server-side on demand.

The key contribution of this paper is a novel methodology for
building scalable Web applications, which present maps of
structured data in a Zoomable User Interface (ZUI) similar to
Google Maps or Microsoft’s Seadragon. Central to this design is
the dynamic construction of small view-dependent tiles in image
space depicting the data, and the delivery of those tiles with
related artifacts describing the user’s current region of interest.
The associated artifacts may be quickly and easily updated based
on the user’s interactions, leading in large part to the quick
responsiveness of the application’s interface. We believe that the
techniques presented here, manifested originally for OrgMaps, are
applicable to the design of a large class of Web applications. In
particular, they are very suitable for the implementation of
semantic 2D ZUIs.

The organization of this paper is as follows. We first present the
design of OrgMaps as a way to show hierarchies in a space-filling
visual map that is amenable to fluid zoom and pan interactions.
Next, we demonstrate the unique features of OrgMaps by
describing an earlier Java prototype that used traditional enterprise
client-server methodologies, and discuss its limitations. We then
discuss the scalable and highly responsive Web-based solution: its
architectural design, pertinent implementation details, and its
performance evaluation. Finally, we present related work, discuss
several in-depth aspects and future plans, and conclude.

2. VISUAL DESIGN & JAVA PROTOTYPE
2.1 Requirements and Goals
We initially built a series of Java-based prototypes in order to
rapidly explore the design space for visual mapping of
organizations. Our design choices were guided by the following
primary constraints:
1. The ability to gain global impressions while exploring local

details of an organizational hierarchy, transitioning between
the two ends smoothly and rapidly.

2. The ability to easily associate, overlay, and visualize various
forms of data contextually in the organizational hierarchy.

These requirements led us to the following concrete interaction
design principles.
1. Simple layout of the hierarchy.
2. Fluid semantic zoom/pan interaction.

3. Generic mechanisms for associating data.
4. Simple metaphors for visualizing overlaid data.
Our eventual choice of visual design builds upon one of the
simplest hierarchical layouts, the icicle plot [7]. Icicle plots place
parents directly above their children, keeping edges implicit rather
than explicit. In this way, the plot can be called space-filling. Each
node is represented by a rectangle whose width is the sum of the
widths of its children. All nodes have the same height, and all leaf
nodes have the same width (for a given zoom level).

Figure 1: Sample icicle plot

Figure 1 shows an icicle plot for a small organization with 10
people: 3 managers (nodes A-C) and 7 non-managers (nodes 1-7).
The reporting structure is very easy to grasp by glimpsing at the
figure (e.g., 3 reports to B, and B reports to A). This ability to
follow parentage vertically is a primary reason we chose icicle
plots over alternative layouts.

2.1.1 Base Visualization
Figure 2 shows a screen shot of our interactive implementation of
an icicle plot for organizations, OrgMaps, for a fictitious
organization of 150 people called renovations.com.

Figure 2: Global view of an organization

OrgMaps uses faces as a central aspect of its visualization. It
builds upon human ability to quickly recognize faces and thus
help form a visual memory of the organizational structure that a
user builds up over time. As the entire organization is visible, leaf
nodes become very thin. Only nodes that are wide enough
(beyond a threshold we set) show the face of the person they
represent (in this case, 14 of the 150 faces are visible). However,
by instrumenting OrgMaps as a ZUI, we can investigate all
branches and individuals in a method similar to starting with a
map of the US, zooming in to a city, and then panning to locate its
various neighborhoods. Via a user interface gesture we can zoom
in on a person so that they become the focus of the plot, as shown
in Figure 3. Note that, even when zoomed, faces of the complete
management chain are kept fully visible for improved context and
navigation.

1 B 4 5 C

A

6 7 3 2

Figure 3: Zoomed-in view of a department

This figure also shows the details panel to the right of the plot, in
which information about the selected person is presented. Both the
faces and the displayed information are obtained from a
centralized corporate directory.

2.1.2 Visualizing Mashups
OrgMaps supports Boolean and scalar variables for visualizing
node attributes. The actual data source may show more data in the
details view per person. Figure 4 depicts a sample Boolean
mashup, showing, for each person, whether they have enrolled for
benefits this year.

Figure 4: Boolean mashup (faces are shrunk)

This mashup was customized to highlight “trouble” regions, so
red cells highlight individuals who have not signed up for
benefits. Such people are easily found through gestalt. Note that
here faces were shrunk, so that the mashup values would be easier
to see.

Figure 5: Scalar mashup

Figure 5 shows a scalar mashup of the organization’s issued
patents (based on real patent data from the USPTO Web site).
This mashup uses color intensity to reflect the number of patents,
where a brighter blue background reflects more patents. All
patents of the selected individual are displayed in the details view.

Figure 6: Interpersonal connections

2.1.3 Visualizing Cross-Organizational Connections
Beyond the departmental structure, we often wish to see other
connections within an enterprise. As an example, Figure 6 shows
patent collaborators on the map by highlighting a selected person
in one color (yellow), and the co-inventors in another (pink). The
list of connected people is displayed in the results dialog (on the
bottom right). Selecting a name on this list focuses the map on
that person.

2.1.4 OrgMaplets and Overview View
The screen shots thus far show detailed views of a single
organization. Our system enables instantiation of multiple
organizational snippets, called OrgMaplets. Figure 7 features two
OrgMaplets, created from the larger map on top.

Figure 7: Overview view

In this example, the OrgMaplets are created to expand select
portions of the organization. Aside from structural zoom, each
OrgMaplet can reflect a different mashup as specified by the user,
thus simultaneously presenting a multiplicity of views into the
organization.

2.2 Interactions
OrgMaps supports highly responsive interactions, among them
selection, zoom/pan and search.
Selection: Moving the mouse sets the hovered person as selected –
they are highlighted on the map and their data is shown in the
details panel. Due to this highly dynamic behavior, other
interactions try to avoid moving the mouse across the map (as
would be needed by a window menu, scroll bar or zoom slider)
and instead are “local”– context menu, keyboard actions, and
mouse clicks and drags. If desired, the current selection may be
“frozen”, in which case all nodes except the selected one are
dimmed.
Zoom, pan, traversal: Dragging the map horizontally pans it,
whereas a vertical drag zooms in and out. The system detects
whether the drag is horizontal or vertical, modifies the cursor

accordingly, and proceeds with the operation. “Optimal zoom” via
double-click or key press scales the selected node to occupy the
entire available width (as shown for Jean Johnson in Figure 3), or
wide enough for it and all its descendents to show faces.
Search: People can be searched for either globally or contextually
(i.e., within the subtree rooted at the selected node) by various
fields such as name or e-mail. Data from mashup sources can also
be searched (e.g., finding patents whose title contains “speech” for
a given department).

3. SCALABLE WEB SOLUTION
The Java system described in the previous section performs well
for organizations containing up to around 30,000 people, once the
organizational data is loaded. Startup time is reasonable for such
sizes when reading the data from a local file system, but
assembling and delivering the data from a server takes several
seconds even for 1000 people. The architecture must therefore be
rethought for scalability. We proceed to describe our scalable
Web solution, which is dramatically faster for large organizations.

3.1 System Architecture and Overview
Our scalable Web architecture is illustrated in Figure 8. The data
are maintained in a database organized for maximal efficiency.
Since the data here exhibit a hierarchical organization, the
database chosen is an LDAP server, and the data are stored in
directories corresponding to their place in the hierarchy. For
efficiency, the data are fetched from the database when the server
is initialized and thereafter maintained by the server in its
memory. The data are processed into a set of models ranging from
an Abstract Data Model to a Session-specific View Model, that is
ranging from the most general to the most specific, respectively.
They have been chosen to minimize memory footprint while
maximizing shared data among users. The single largest model is
the Abstract Data Model. It contains as much of the data from the
LDAP server as practicable, and is shared among all clients.

Further, it is natural-language independent, with language
constructs represented by tokens that describe the data and related
fields. The Abstract Data Model is reconstructed periodically as
changes to the organizational structure are reported. The
architecture allows the database to be refreshed independently of
the of the in-memory models.
The client browser and the application establish a session, during
which time the client offers the server metadata describing itself:
its screen size, resolution, and the user’s preferred language. The
server inspects its internal structures to determine if an
appropriate Natural-Language-specific Data Model has already
been constructed , and if not creates and stores it for future
lookups. This Natural-Language-specific Data Model is not a
language-specific copy of the Abstract Data Model, but is a filter
placed before it to replace tokens with translated phrases upon
access. Natural language-specific data models are shared among
all relevant clients. This model is of very modest size,requiring
only about 0.5% of the memory used by the Abstract Data Model.
The user initiates the process of viewing a hierarchy, or tree, by
specifying the identity of the individual at the root of the tree.
This choice is sent to the server which in turn creates an Abstract
View Model of this tree, representing a view of the tree suitable
for arbitrarily fine resolution with an arbitrarily large screen size
of the client. This model contains only information on the
positions of individual nodes within the view and lacks
dependence on any particular natural language. It also is of
modest size. The server temporarily stores this model so that it
may be shared among all clients viewing a tree from the same root
in a Least Recently Used (LRU) cache.
The server uses the information on resolution and screen size
provided during session creation to construct a Session Specific
View Model for the client. This is the only model unique to a
particular client and session. It incorporates knowledge of the
resolution of the client device, client identity, and other client and
session-specific data. The server derives the images it sends to the

Figure 8: Client-Server architecture illustrating Client Artifacts and Server Models.

client directly from this model. Further, the server computes and
maintains a set of coordinate transformations from the space of
the client device to that of the session specific view model so that
the user’s actions, such as the moving of the pointing device, may
be mapped efficiently to the corresponding element in the Session
Specific View Model.
The server performs a series of transformations upon the Session
Specific View Model while preparing the visual images for the
client. The first transformation corrects for the limited resolution
of the client device. The session specific view model may
represent a large dataset, so large that if it were to be viewed in
total on the client, the leaf nodes would be smaller than one pixel.
In order to rectify this, the server combines, or ‘elides’, such leaf
nodes into larger blocks until they are large enough to be visible.
Additional metadata may be associated with an individual in the
data set’s model, such as a picture or label. Of course, it is only
sensible to attempt to display such metadata if the individual’s
node as represented in the view model is large enough so that it
would be visible. The server adds in this metadata for nodes larger
than a threshold value, thereby reducing unnecessary data
transmitted.
The user may not wish to view the entire session specific view
model as a single image. Indeed, for a large dataset, the resulting
image may not convey the desired information, much like the case
of a topographical map: when viewed in its entirety, a book-sized
map of a large country will not yield much information about
individual street names in the capital city. We view the width of
the leaf nodes as an adjustable parameter, affording the user the
ability to control the level of detail granted to a particular region
of the view model. The width of the leaf nodes, or zoom-level,
may assume a continuum of values, not just the discrete set
familiar from topographical maps.
The server must take this zoom-level into account in several
places. First, when the zoom-level is increased, it may no longer
be necessary to elide leaf nodes as they will now be visible as
separate entities. More significantly, when the zoom-level is
sufficiently high, the view model may represent an image many

times larger than the available area on the client device.
Delivering a single image of the view model in this case would be
inefficient and unnecessary. The server prepares, rather, a set of
tiles, one or more for each level of the hierarchy. This tiling
scheme is illustrated in Figure 9. Suppose that the user is currently
interested in a particular region of the view model. The set of tiles
prepared for this region would comprise tiles covering the region
and also the regions immediately to the left and right of the region
of interest. Tiles beyond the perimeter fences are ignored. Only
the bounding box of the tile need be delivered to the client, along
with a unique tile key. The client uses this key when constructing
the URL for fetching the image contained in the tile. Tiles
extending beyond the left and right perimeter fences are truncated
by the client at the fences before such a request is placed. The
server takes this truncation into account while drawing the tile’s
image. Additionally, no individual in the organization belongs to
more than one tile, as splitting an individual across tiles could lead
to a highly disruptive flicker when the tiles are sequentially
loaded.
Construction of tiles proceeds in the following manner. First, the
server computes an offset to the left-hand position of the session-
specific view model so that the region of the user’s interest is
centered within the viewport; this offset is maintained in the
session-specific metadata. Next, the server examines each level or
row of the hierarchy in turn. Beginning with the left-most
individual in each row and proceeding to the right in sequence
from sibling to sibling, the server locates the first individual
located at least partially in the Left Neighbor Region (See Figure
10). The server then creates a new tile, adding this individual as
its first member. It adds siblings in turn until it encounters a
sibling wholly or partially within the Viewport Region. In a
similar manner, it creates new tiles for other individuals within the
Viewport and Right Neighbor Regions. The tile is given a set of
coordinates detailing its width and position of its left edge in the
client coordinate space. Finally, the tile is given its unique tile key
In addition to the images prepared for the client, the server
prepares a limited set of descriptors, delimiting various regions of
the images. The client has no a priori knowledge of the location

Figure 9: Example of Tiles for Hierarchy of n Levels

of any such regions: it only displays images. First, the server
prepares descriptors for the several rows of the hierarchy given
the positions of the tops and bottoms of each row. Next, the server
creates descriptors of the individuals immediately above, below
and to the left and right of the region of interest. Note that a single
visible image may represent many hundreds of individuals. It is
inefficient for the server to deliver descriptors for all, and also
unwarranted since the user may only interact with one individual
at a time. As the user interacts with the image, by moving the
cursor across the map, he or she may change the region of interest.
Consequently, the server computes and delivers additional
descriptors for the new region of interest.
It is the responsibility of the client application to assemble the set
of tiles and descriptors it receives into a coherent presentation for
the user. Further, it maintains a series of linked-lists containing
the descriptors as they arrive from the server.
Given the very large available address space of our server, we
choose to maintain all of the objects described above in the
server’s memory. This naturally leads to the best performance by
the server at the cost of a substantial memory footprint. The single
largest object is the Abstract Data Model. For a dataset of twenty-
four thousand individuals, this requires about 34 megabytes. The
memory required for any individual user is much smaller, being
initially about 300 kilobytes and increasing slowly in size to about
10 megabytes as the user interacts with the system.

3.2 User Interaction
When an individual is selected for the first time, the server
prepares and delivers a set of descriptors of the location of the
individual within the image, and that of his or her parent, children,
and right and left siblings. Additional further detailed information
on the selected individual, such as telephone and office numbers
are also prepared. The bounding box of the selected individual is
highlighted with a border of a contrasting color. The metadata
belonging to this individual and any further detailed information
is displayed in a separate pane.
When the user first requests a tree rooted at a particular
individual, the resulting image is devised exactly to fill the
client’s viewport. If the requested tree is large, many of the
individuals as represented in the image may be so small that they
are practically invisible. This condition may be rapidly altered
through a zoom operation, consisting in changing the level of
detail presented to the user. Unlike ZUIs that maintain aspect
ratio, a zoom within the icicle plot is performed by changing the
width of a leaf node, as all nodes are of the same height. The level
of detail relative to the selected individual may be increased --- by
zooming in --- or decreased --- by zooming out. In either case, a
new set of tiles is requested from the server, and new set of view
descriptors are prepared and delivered. The server maintains the
artifacts associated with the previous zoom level for a
predetermined time should the user wish to next return to this
previous level, i.e., ‘undo’ the zoom operation. It should be noted
that a zoom-operation occurs only the horizontal dimension, with
the vertical left unchanged.
Panning consists of dragging the image being viewed to the right
or to the left. For the first image delivered, crafted exactly to fill

the viewport, such an operation would not be sensible, and is
prevented deliberately. However, after a zoom operation, the full
view may be larger, indeed much larger, than the viewport, should
the view be displayed in its entirety Through a pan, regions
beyond the viewport are dragged into view. This operation is
accomplished very efficiently by dragging the image as a single
whole, including both the visible parts of the image and the
invisible parts beyond the borders of the viewport. Note that the
image may be tiled, but all tiles are dragged simultaneously.
Further, we choose to allow the user to drag the image at most a
distance equal to the width of the viewport in a single action.
Thus, providing a smooth pan operation from the user’s
perspective requires only that prior to the start of the pan
operation those tiles be present just to the right and left of the
viewport. At the conclusion of the pan operation, when say the
pointing device is released, new tiles are fetched, in anticipation
of a subsequent pan operation.
The pan operation has a requirement of some subtlety when the
user is viewing hierarchical data. If there are any labels, images or
other metadata associated with a particular individual, particularly
one near the top the hierarchy and therefore represented by a wide
node, this information may well have moved beyond the viewport.
In such cases, the client might request a new tile of the server, as
detailed below, with the metadata displayed at the appropriate
new position. To the user, the metadata will appear to ‘snap’ back
into view.
This process of adjusting the position of the metadata risks
triggering a large number of interactions with the server, causing a
reduction of responsiveness as the server redraws the tiles. The
adjustment process begins a specific time after the pan has ended;
if the user initiates another pan before this time elapses, the
adjustment is postponed until after the end of this new pan, and so
on. In order to further minimize interactions with the server, once
the adjustment process starts we classify each tile into one of six
categories as indicated in Figure 10: Übertile, a tile extending at
least partially into the left and right neighbor regions; Left
Neighbor Hidden, a tile contained only partially within the left
neighbor region; Left Neighbor Visible, a tile contained partially
within the left neighbor region and partially within the viewport
region; Central Tile, a tile entirely within the viewport region;
Right Neighbor Visible, a tile contained partially within the
Viewport and partially within the Right Neighbor Region; Right
Neighbor Hidden, a tile only partially contained within the Right
Neighbor Region; and Hidden, a tile entirely to the right or left of
the corresponding neighbor region. The metadata of all Übertiles
may be adjusted by the client alone without help from the server.
We determine the tiles requiring adjustment in the following
manner: tiles of types Hidden, Left Neighbor Hidden and Right
Neighbor Hidden are completely invisible and need not be
adjusted; a tile of type Central that was of another type before the
pan operation will require adjustment, as will all tiles of types Left
Neighbor Visible and Right Neighbor Visible. Existing tiles may
also need to be adjusted if truncated. To ensure that they not
extend beyond the left or right boundaries, their widths and
positions are corrected so that they remain centered within the
viewport. This correction is accomplished solely by the client.

3.3 Implementation Setup Details
The server machine we employ operates under Microsoft
Windows 2008 Server, a 64 bit operating system affording full
access to all of the machine’s 24 gigabytes of RAM. We employ
IBM WebSphere Application Server 6.1, IBM Tivoli Directory
Server 5.2 and Mozilla Firefox 3.52. Similar results would be
obtained for other server products, and we have ensured that our
system performs properly when used with the Microsoft Internet
Explorer 7 browser as well as WebKit based browsers.
We make use only of dynamic HTML, Asynchronous JavaScript
and XML (AJAX), and HTTP servlets composed in the Java
language. For purposes of this paper, we wished to investigate the
limits of HTML and AJAX, determining by how much we could
constrain their resource usage, in the hope of extending this work
to mobile devices, with very limited memory available and
without additional runtimes beyond the web browser. For similar
reasons we avoid reliance on rendering technologies such as
Adobe Flash or Microsoft SilverLight.

4. EVALUATION
4.1 Experience and Feedback
We collected feedback on OrgMaps through demonstrations of the
Java prototype inside IBM and also at the Lotusphere conference.
As the corporate directory is one of the most heavily used
enterprise applications at IBM, there was clear interest in
OrgMaps’ ability to provide easily-navigable views and data
aggregation. People from other types of organizations, such as
government and education, also saw clear use cases for the
hierarchical view. The desire of people to easily deploy OrgMaps
for their organization was an important factor in leading us to
pursue a Web-based implementation.
The Java version is feature rich, with many key-based
interactions. Although impressive for demonstrations, we
observed that new users found the interface confusing. We took
this under consideration when building the Web-based version, by
relying more heavily on mouse interactions and providing an
easily-accessible “quick help” mechanism.
The levels in the hierarchy need not be of the same type; they only
need to support a child-parent relationship. An early prototype of

OrgMaps was used during the ACM Programming Competition
2008 with the levels representing continents, countries,
universities, teams and individual competitors. Participants
quickly gained top-down insights into the geographic distribution
of the contest.
We have made several improvements from user suggestions. One
suggestion was to keep the faces visible for all qualifying visible
nodes, even when they are significantly off-center; this had a
significant impact on the dynamic tiling architecture. Another
comment was that faces that occupy the entire height of a node
seem to visually break it into 3 nodes (left, face, right). In
response, faces are now fully embedded in nodes (with margins
on top and bottom). Another suggestion was to use heated object
spectrum for scalar mashups, as an improvement for color-blind
users. Upon experimenting we decided not to follow this
suggestion, as the different hues, when combined with the face
images create too much visual complexity. That said, this raised
our awareness of the importance of adding user controls for
tailoring the view. Another user wished to use OrgMaps to glean
groups in calendar invitations. As a consequence, we recently
added the capability to visualize a set of people based on their
names or e-mail addresses to the Web-based version.
We have recently begun deployment of the new Web-based
version that is the focus of this paper within IBM. We look
forward to gaining future insights.

4.2 Performance
One of the most important considerations for the user of a Web
application, or any application for that matter, is the amount of
time required before the application is loaded and ready for
operation. Another factor is the speed of response to the user. In
our initial prototype implementations of OrgMaps we used an
architecture whereby a complete description of the

Figure 10: Classification of Tiles

organization was delivered to the client browser. The browser was
then able to perform all actions required by the user, the server
acting only to provide metadata pertaining to a selected node, as
needed. The architecture performed well for small organizations,
but was unsuccessful for large ones. The performance of a client
system using only HTML and JavaScript is illustrated in Figure

11. It shows the times to fetch the organization into the browser,
the time to eval or transform this into JavaScript objects, and the
time to layout or create objects in the browser’s DOM to render
the organization visible. An organization of only 3000 nodes
requires almost two seconds to be usable in such a scheme. It did
not prove feasible to view an organization of 20,000 nodes; the
time to deliver the organization alone rose to over two minutes.
We tried replacing the use of DOM objects in the browser with a
Canvas as implemented in Firefox and Safari. This yielded a
slight improvement in performance in that the layout time was
reduced, but the dominant eval time was naturally unchanged.
This is also illustrated in Figure 11.
Clearly, a different approach was needed to rectify these
shortcomings for very large organizations. We chose to partition
the data into a set of models maintained in the server, and a very
much smaller set delivered to the client, as shown in Figure 8.
This approach was detailed above in section 3.1. The performance
is remarkably improved. For example, consider an untiled view;
here all of the nodes in the organization may be rendered in a
single image lying within the viewport. The server creates the
Session Specific View Model, and renders it in an off-screen
buffer. It only needs to deliver to the client the descriptors of a
few individuals in the vicinity of the selected individual and a
view key, used subsequently by the client to fetch this image. The
eval time has been reduced to an insignificant 3 ms. The time

needed to fetch an organization is shown in Figure 12. Note here
that has proven possible to fetch organizations of as many as
149000 nodes with an acceptable response time of less than one
second. Note that this time includes the layout time of Figures 11
since the layout and drawing of the image is performed by the
server before it returns the set of descriptors to the client.

Consider next a tiled view, typically created through a process of
zooming in. Further, assume that such a view was created by
zooming-in within an untiled view. The times to create and load
the tiled view are shown in Figure 13 for untiled views of three
different sizes. The times depend only weakly on the number of
nodes in the tiled view and depend most strongly on the number
of individuals represented by the untiled view. This to be
expected, as the tiled view is derived from the Session Specific
View Model, which contains the entire contents of the untiled
view. The choice of a sub-organization of a particular size only
necessitates the location of a particular region within the Session
Specific View Model.
We paid particular attention to the size of the various models on
the server. Through careful construction it proved possible to limit
the Abstract Data Model for an organization of twenty-four
thousand individuals to 34 megabytes; the size of the model is
linear in the number of individuals. For an organization of similar
size, the Natural Language Specific Data Model requires roughly
110 kilobytes. The view models are only created when the user
initiates a request. The initial, untiled, view of this organization
requires 330 kilobytes. If the user then zooms in on an individual
near the top of the organization, creation of the resulting tiled
view requires an additional six megabytes.

5. FUTURE WORK
We plan to extend our work in two significant ways, namely
building out several additional features and capabilities into
OrgMaps, and applying these techniques to other applications
with large datasets. Examples might be applications such as
representations of product catalogs and educational,
governmental, and professional organizations.

As mentioned in the beginning of this paper, one of the motivators
for moving to the Web is composition of services. We plan
integrate the OrgMaps service into other applications such as
mail, calendar and meetings, where recipients and attendees can
be highlighted to generate an OrgMap view. Further, we plan to
integrate OrgMaps with collaborative facilities such as instant
messaging whereby a chat could be initiated when the user clicks
on a node on the OrgMap. Further, the instant messaging client

Figure 11: Load Times for a client centric
architecture

Figure 12: Creation and Load Times for a scalable
architecture

Figure 13: Time to Create and Load Tiled View

will be able to indicate the availability of other individuals
through a visual artifact on the OrgMap itself.

We had previously implemented several data mashup capabilities
on the Java applet version. We plan to bring these existing
capabilities to the Web-based version. Since the mashup is now
done within the confines of a browser and not a native application,
issues surrounding privacy and security of data arise. For
example, if sensitive employee information that is available to a
manager is mashed up we need to build confidence that the server
does not have access to the data or if it does, it promptly destroys
the user’s data when the session terminates. Anonymization or
hybrid techniques that send only intermediate data forms to the
server may be necessary to protect the user’s data.

We intend to improve the user interface to allow for more
efficient use of the vertical dimension. If an organization is
composed of many levels, each individual level may be very
narrow. We have already implemented the ability to reroot the
view at a lower level in the tree; an individual may be selected
and a new view requested with this individual as the root. We also
plan to extend the concept of a zoom to the vertical as well,
allowing the user to select a subset of the available rows for
display.

Some features we plan to consider center around social
computing. Users may want to know how often and who in the
enterprise is looking them up. Users may also like to be notified
when the organizational structure or job responsibility of someone
they work with changes. By maintaining logs of most popular
people in the enterprise we can ensure that abstract view models
for such individuals are prebuilt. Issues surrounding privacy
clearly arise with such use cases and will have to be addressed on
a case-by-case basis. In addition, we intend to experiment with
pre-warming the models when we can predict that some may be
particularly popular. For example, consider that some individual
has just published an important paper; it should be possible to
predict that many users would want to view this individual and his
or her neighborhood.

Though memory utilization on the server is not a bottleneck at
present, we plan to implement several memory management
schemes to guarantee that the server memory is not exhausted
after many user’s activities. In particular, we will allow Abstract
View Models, and Session Specific metadata to expire so as to
free up memory. Similar techniques will be implemented on the
client whereby view descriptors will be allowed to expire. As
more Web applications are deployed, managing the browser cache
will become an important aspect of controlling the memory usage
of the browser. Interfaces allowing selective clearing of the cache
will provide such control.

Our implementation is now also ready for wider deployments in
the enterprise. We plan to make it available to every employee at
IBM. Clearly, this deployment may lead to requests for additional
features and surface issues that have not arisen hitherto.

6. RELATED WORK
Our work is principally differentiated from previous work in that,
1) it uses a basic Web client with no proprietary technologies, 2)
all transmitted tiles reflect a specific user session, 3) its fluid, low-
latency response necessitates a tiling of the visualization with
look-ahead, 4) when look-ahead tiles become the central focus in
the client viewport, these tiles reflect a constrained-view that is
not equivalent to the previously focused tiles on a larger viewport,

and 5) we dynamically classify the view-specific tiles to reduce
unnecessary communications.
The use of a range of client-server techniques for rendering
display content in thin clients with different tradeoffs is old. In
one extreme, in the VNC and GoToMyPC protocols the server
sends only images to the thin clients. In the X Windows system,
application logic runs on the server and rendering is done on the
thin client (running the X Server), by sending it graphics
primitives. With Citrix ICA and Microsoft RDP, rendering is done
on the server and display updates are sent via a rich set of low-
level graphics primitives to the client. SLIM [12] and THINC [1]
also perform rendering on the server but take an intermediate
approach to reduce bandwidth and latency by sending only a small
set of higher-level graphics primitives that are transparently
mapped to a few simple low-level primitives rendered directly by
graphics hardware on the client. pTHINC [6] extend THINC to
PDAs and performs server side scaling of images. However, none
of the above techniques target specific Web-based applications,
such as OrgMaps, with the need for dynamic and independent
rendering tradeoffs within a browser.
Researchers in 3D computer graphics have encountered the
challenges of handling large numbers of objects at interactive
rates. Multi-resolution, view-dependent, and progressive mesh [5]
representations of 3D models have been used to reduce the
number of polygons that are sent to the rendering engine.
Techniques, known as image-based rendering [16], have been
devised to incrementally update images for small changes in
viewpoints without having to render the complete model again.
Chang & Ger [2] apply image-based rendering techniques to
mobile devices and send rasterized images from a static scene
with additional single-layered depth images to support occlusion-
correct 3D rotation interaction. While much of this work was
performed with native applications when the graphical models are
available locally and not in the context of Web-based applications,
the ideas are applicable to our problem. We have essentially used
a hybrid approach that combines object-space and image-space
rendering techniques. We compute view-dependent tiles in object
space on the server and send down rendered image tiles to the
client along with metadata to allow local view updates for pan
operations without going back to the server. We also deliver the
metadata progressively. With our design point we did not require
data compression, which could increase the load on both the client
and the server.
Another class of related work is those systems that use servers to
perform rendering of complex 3D scenes for simple clients. For
example, Poliakov et al. took this approach because of the lack of
unified 3D APIs for the Web [11]. These frameworks have
typically not supported very dynamic and interactive behavior. As
is done with image-based rendering, the client morphs the cached
data without a server round-trip to approximate a basic translation
or rotation of the camera. See [9] for a more exhaustive set of
related work and for an analysis of methods for remote
visualization.

Most similar architectures to ours, such as those that display
geographic data, allow zoom and pan only on static tiles. While
Google Maps uses pre-rendered images that are session
unspecific, Sorokine & Merzliakova [13] performs session-aware
server-side rendering, but instead output simplified geometric
primitives to be rendered client-side rendered in the browser.
They also use limited navigation controls that do not perform
look-ahead rendering for smooth navigation. D’Ambros et al. uses
server-backings to tie multiple software engineering systems

together providing a compact SVG output to the server [3]. They
note the SVG data and rendering are performance inhibiting. Eick
et al. [4] also use SVG output to Web clients from multiple server
backings in a generalized visualization framework. Because of the
use of SVG rather than rasterized images for the client, their
performance suffers similarly to our initial client-rendered system.
Flashproxy [10] uses server proxies to interact with Flash content
on devices that lack the run-time. They use SWF binary re-writing
and a custom JavaScript bridge to permit interactions with the
remotely-hosted SWF using only a basic Web client.
More widespread availability of WebGL will give browsers
access to rendering hardware and could alter the tradeoffs that
have been employed in web-based graphics and visualization.

Web-based mashups or service compositions was one of our
motivations to make OrgMaps a Web-based service. Making
mashups easy is a challenge. In [14], the authors provide a
programming model for building mashups by end users and
discuss the implementation and evaluation issues associated with
end-user mashup programming. In [8] a framework that allows
users to easily build mashups from within a familiar spreadsheet
environment by making complex data as first class spreadsheet
cell values is presented. The Marmite [15] tool for end-user
programming on the Web works by displaying a linked data flow
spreadsheet view, letting people see the program as well as the
data simultaneously.

7. CONCLUSION
In this paper we have presented the OrgMaps system for
interactive mapping of hierarchical organizations. The scalable
Web architecture we have devised enables OrgMaps to perform
well even for organizations with hundreds of thousands of people.
We believe that the architecture and methodology described here
are broadly applicable to Web-delivered visualization-intensive
enterprise applications.

8. REFERENCES
[1] Baratto, R., Kim, L., and Nieh, J., THINC: A Virtual Display

Architecture for Thin-Client Computing, In Proc. SOSP,
2005, pp. 277-290.

[2] Chang, C. and Ger, S., Enhancing 3D Graphics on Mobile
Devices by Image-Based Rendering. In Proc,of the Third
IEEE Pacific Rim Conference on Multimedia: Advances in
Multimedia information Processing pp. 1105-1111.

[3] D’Ambros, M., Lanza, M., Lungu, M., and Robbes, R.
Promises and Perils of Porting Software Visualization Tools
to the Web. In Proc. of WSE 2009 (11th IEEE International
Symposium on Web Systems Evolution).

[4] Eick, S. G., Eick, M. A., Fugitt, J., Horst, B., Khailo, M., and
Lankenau, R. A. 2007. Thin Client Visualization. In Proc. of
the 2007 IEEE Symposium on Visual Analytics Science and
Technology, 2007, pp. 51-58.

[5] Garland, M., “Multiresolution Modeling: Survey & Future
Opportunities,” Eurographics State of the Art (STAR)
Report, In Proc. Eurographics, 1999.

[6] Kim, J., Baratto, R., and Nieh, J., pTHINC: A Thin-Client
Architecture for Mobile Wireless Web, In Proc. WWW
2006, pp. 143-152.

[7] Kruskal, J.B, and Landwehr, J.M. 1983. “Icicle Plots: Better
Displays for Hierarchical Clustering”. The American
Statistician, vol 37, no 2. pp. 162-168.

[8] Kongdenfha, W., Benatallah, B., Vayssière, J., Saint-Paul,
R., and Casat, F., Rapid Development of Spreadsheet-based
Web Mashups, In Proc. of WWW 2009, pp. 851-860.

[9] Luke, E. J. and Hansen, C. D., Semotus Visum: a flexible
remote visualization framework. In Proc. of the Conference
on Visualization 2002 , pp 61-68.

[10] Moshchuk, A., Gribble, S. D., and Levy, H. M., Flashproxy:
transparently enabling rich Web content via remote
execution. In Proc. of the 6th Intl Conference on Mobile
Systems, Applications, and Services 2008, pp. 81-93.

[11] Poliakov, A. V and Albright, E. M., Corina, D. P, Ojemann,
G. A., Martin, R. F, and Brinkley, J. F., Server-Based
Approach to Web Visualization of Integrated 3-D Medical
Image Data. In Proc. American Medical Informatics
Association Fall Symposium, 2001, pages pp. 533-537.

[12] Schmidt, B. K., Lam, M.S., and Northcutt, D., The
interactive performance of SLIM: a stateless, thin-client
architecture, In Proc. of SOSP 1999, pp 32-47.

[13] Sorokine, A. and Merzliakova, I., Interactive map applet for
illustrative purposes. In Proc. of the 6th ACM international
Symposium on Advances in Geographic information
Systems, 1998, pp. 46-51.

[14] Wang, G, Yang S., and Han. Y., Mashroom: End-User
Mashup Programming Using Nested Tables, In Proc of
WWW 2009, pp. 861-870.

[15] Wong, J. and Hong, J. I., Making Mashups with Marmite:
Towards End-User Programming for the Web, In Proc of
CHI 2007, pp. 1435 - 1444.

[16] Zhang, C. and Chen, T., A Survey on Image-Based
Rendering - Representation, Sampling and Compression,”
Technical Report AMP 03-03, June 2003, Electrical and
Computer Engineering, Carnegie Mellon University.

