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ABSTRACT 
As sophisticated enterprise applications move to the Web, some 
advanced user experiences become difficult to migrate due to 
prohibitively high computation, memory, and bandwidth 
requirements. State-dependent visualizations of large-scale data 
sets are particularly difficult since a change in the client’s context 
necessitates a change in the displayed results. This paper describes 
a Web architecture where clients are served a session-specific 
image of the data, with this image divided into tiles dynamically 
generated by the server. This set of tiles is supplemented with a 
corpus of metadata describing the immediate vicinity of interest; 
additional metadata is delivered as needed in a progressive 
fashion in support and anticipation of the user’s actions. We 
discuss how the design of this architecture was motivated by the 
goal of delivering a highly responsive user experience. As an 
example of a complete application built upon this architecture, we 
present OrgMaps, an interactive system for navigating 
hierarchical data, enabling fluid, low-latency navigation of trees 
of hundreds of thousands of nodes on standard Web browsers 
using only HTML and JavaScript. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures – 
Patterns (e.g., client/server, pipeline, blackboard). 

H.5.3 [Information Interfaces and Presentation]: Group and 
Organization Interfaces – Web-based interaction. 

General Terms 
Performance, Design, Human Factors. 

Keywords 
Rich Internet Applications. 

1. INTRODUCTION 
Enterprise applications are moving to the Web for a variety of 
reasons, including ease of deployment, manageability and 
consistency and security of enterprise data. Large monolithic 
applications are also being decomposed into Web-based services 
so they can easily be combined with other services. Transitioning 
an enterprise application into a responsive and scalable Web 
application is not straightforward when it demands non-trivial 
amounts of computation, memory, bandwidth, and other scarce 
resources. This challenge is further exacerbated when large 
quantities of data have to be presented visually and altered 
dynamically as the user’s context changes. 

Achieving the performance to which users have become 
accustomed on traditional applications requires new frameworks 
and methodologies in the Web client-server model. In this paper 
we present one such endeavor for the display and navigation of 
layered hierarchical data. We motivate changes to a traditional 
application architecture, in which the application runs completely 
on the client’s machine with any server acting only to provision 
this application with data; we seek to achieve high-performance 
inside any standard Web browser using common technologies. 
Our client-server model performs several orders of magnitude 
faster compared to a direct port of a traditional model, without 
sacrificing dynamic behavior on the client. 

An important consideration in designing high-performance Web 
applications is the partition of labor between client and server, 
both in processing and transmission of data. Towards one end of 
the spectrum, some enterprise applications, such as those used in 
the interactive exploration of large-scale data sets, push large 
amounts of data to the client to distribute the computation away 
from central data-centric servers. Such an approach is not yet 
plausible in the modern Web browser; some of the strongest 
limitations include single threaded virtual machines, too much 
heterogeneity in (the lackluster) performance and capability of 
native graphics functions, overhead with AJAX-based network 
I/O, and a DOM model optimized for incremental flow of text 
rather than specialized drawing technologies and atomic 
animation. In other cases, even if the browser had access to 
onboard graphics accelerators and bandwidth was plentiful, 
enterprises may not wish to send the raw application data to each 
user’s browser for security reasons, preferring instead to send 
intermediate forms of processed data that are less revealing. These 
issues and more are particularly problematic when trying to 
support even more constrained clients such as mobile phones 
using the same HTML and JavaScript as for the desktop.  

We tackle these performance issues in the context of applications 
that support visualization and interactive navigation. The concrete 
application we discuss here is called OrgMaps, whose goal is to 
visually map hierarchical organizations with the superposition of 
additional data (visual mashups). OrgMaps, shown in various 
figures in Section 2, permits users smoothly to navigate the 
structural neighborhoods of individuals within the organization – 
their department, reporting chain and so on – through zoom and 
pan operations. Visually overlaying data on the organization 
structure is often highly informative, e.g., seeing the distribution 
of children and teachers in an elementary school who have had the 
flu this season. OrgMaps belongs to a class of applications we call 
Enterprise Mashup Substrates, in which enterprise data is 



presented visually in a common form to act as a generic substrate 
for overlaying associated information.  

One of the fundamental challenges in building OrgMaps was 
scalability: making it perform well for large organizations with 
hundreds of thousands of individuals. Our initial approach of 
sending the organizational data to the browser for rendering did 
not perform well for organizations larger than a few hundred 
members for reasons cited above, which are discussed in more 
detail in section 4.2. We then considered approaches used in 
graphics rendering for thin clients where texture maps (e.g., 
games) and pre-rendered tiles (e.g., Google Maps) are often used 
instead of more exact object representations to speed up 
rendering. A major roadblock in our visualization was the 
inability to use static pre-rendered image tiles. Static tiles prevent 
arbitrary zoom levels, do not keep up with dynamic nature of the 
input data being concurrently modified, cannot support fine-
grained access controls, and cannot flexibly support view-specific 
morphology. Instead, we looked to a tiling methodology where 
user-specific tiles are rendered server-side on demand. 

The key contribution of this paper is a novel methodology for 
building scalable Web applications, which present maps of 
structured data in a Zoomable User Interface (ZUI) similar to 
Google Maps or Microsoft’s Seadragon. Central to this design is 
the dynamic construction of small view-dependent tiles in image 
space depicting the data, and the delivery of those tiles with 
related artifacts describing the user’s current region of interest. 
The associated artifacts may be quickly and easily updated based 
on the user’s interactions, leading in large part to the quick 
responsiveness of the application’s interface. We believe that the 
techniques presented here, manifested originally for OrgMaps, are 
applicable to the design of a large class of Web applications. In 
particular, they are very suitable for the implementation of 
semantic 2D ZUIs. 

The organization of this paper is as follows. We first present the 
design of OrgMaps as a way to show hierarchies in a space-filling 
visual map that is amenable to fluid zoom and pan interactions. 
Next, we demonstrate the unique features of OrgMaps by 
describing an earlier Java prototype that used traditional enterprise 
client-server methodologies, and discuss its limitations. We then 
discuss the scalable and highly responsive Web-based solution: its 
architectural design, pertinent implementation details, and its 
performance evaluation. Finally, we present related work, discuss 
several in-depth aspects and future plans, and conclude. 

2. VISUAL DESIGN & JAVA PROTOTYPE 
2.1 Requirements and Goals 
We initially built a series of Java-based prototypes in order to 
rapidly explore the design space for visual mapping of 
organizations. Our design choices were guided by the following 
primary constraints: 
1. The ability to gain global impressions while exploring local 

details of an organizational hierarchy, transitioning between 
the two ends smoothly and rapidly. 

2. The ability to easily associate, overlay, and visualize various 
forms of data contextually in the organizational hierarchy. 

These requirements led us to the following concrete interaction 
design principles. 
1. Simple layout of the hierarchy.  
2. Fluid semantic zoom/pan interaction. 

3. Generic mechanisms for associating data. 
4. Simple metaphors for visualizing overlaid data. 
Our eventual choice of visual design builds upon one of the 
simplest hierarchical layouts, the icicle plot [7]. Icicle plots place 
parents directly above their children, keeping edges implicit rather 
than explicit. In this way, the plot can be called space-filling. Each 
node is represented by a rectangle whose width is the sum of the 
widths of its children. All nodes have the same height, and all leaf 
nodes have the same width (for a given zoom level).  

 
Figure 1: Sample icicle plot 

Figure 1 shows an icicle plot for a small organization with 10 
people: 3 managers (nodes A-C) and 7 non-managers (nodes 1-7). 
The reporting structure is very easy to grasp by glimpsing at the 
figure (e.g., 3 reports to B, and B reports to A). This ability to 
follow parentage vertically is a primary reason we chose icicle 
plots over alternative layouts. 

2.1.1 Base Visualization 
Figure 2 shows a screen shot of our interactive implementation of 
an icicle plot for organizations, OrgMaps, for a fictitious 
organization of 150 people called renovations.com. 

 
Figure 2: Global view of an organization 

OrgMaps uses faces as a central aspect of its visualization. It 
builds upon human ability to quickly recognize faces and thus 
help form a visual memory of the organizational structure that a 
user builds up over time. As the entire organization is visible, leaf 
nodes become very thin. Only nodes that are wide enough 
(beyond a threshold we set) show the face of the person they 
represent (in this case, 14 of the 150 faces are visible). However, 
by instrumenting OrgMaps as a ZUI, we can investigate all 
branches and individuals in a method similar to starting with a 
map of the US, zooming in to a city, and then panning to locate its 
various neighborhoods. Via a user interface gesture we can zoom 
in on a person so that they become the focus of the plot, as shown 
in Figure 3. Note that, even when zoomed, faces of the complete 
management chain are kept fully visible for improved context and 
navigation. 
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Figure 3: Zoomed-in view of a department 

This figure also shows the details panel to the right of the plot, in 
which information about the selected person is presented. Both the 
faces and the displayed information are obtained from a 
centralized corporate directory. 

2.1.2 Visualizing Mashups 
OrgMaps supports Boolean and scalar variables for visualizing 
node attributes. The actual data source may show more data in the 
details view per person. Figure 4 depicts a sample Boolean 
mashup, showing, for each person, whether they have enrolled for 
benefits this year. 

 
Figure 4: Boolean mashup (faces are shrunk) 

This mashup was customized to highlight “trouble” regions, so 
red cells highlight individuals who have not signed up for 
benefits. Such people are easily found through gestalt. Note that 
here faces were shrunk, so that the mashup values would be easier 
to see. 

 
Figure 5: Scalar mashup 

Figure 5 shows a scalar mashup of the organization’s issued 
patents (based on real patent data from the USPTO Web site). 
This mashup uses color intensity to reflect the number of patents, 
where a brighter blue background reflects more patents. All 
patents of the selected individual are displayed in the details view. 

 
Figure 6: Interpersonal connections 

2.1.3 Visualizing Cross-Organizational Connections 
Beyond the departmental structure, we often wish to see other 
connections within an enterprise. As an example, Figure 6 shows 
patent collaborators on the map by highlighting a selected person 
in one color (yellow), and the co-inventors in another (pink). The 
list of connected people is displayed in the results dialog (on the 
bottom right). Selecting a name on this list focuses the map on 
that person. 

2.1.4 OrgMaplets and Overview View 
The screen shots thus far show detailed views of a single 
organization. Our system enables instantiation of multiple 
organizational snippets, called OrgMaplets. Figure 7 features two 
OrgMaplets, created from the larger map on top. 

 
Figure 7: Overview view 

In this example, the OrgMaplets are created to expand select 
portions of the organization. Aside from structural zoom, each 
OrgMaplet can reflect a different mashup as specified by the user, 
thus simultaneously presenting a multiplicity of views into the 
organization. 

2.2 Interactions 
OrgMaps supports highly responsive interactions, among them 
selection, zoom/pan and search. 
Selection: Moving the mouse sets the hovered person as selected – 
they are highlighted on the map and their data is shown in the 
details panel. Due to this highly dynamic behavior, other 
interactions try to avoid moving the mouse across the map (as 
would be needed by a window menu, scroll bar or zoom slider) 
and instead are “local”– context menu, keyboard actions, and 
mouse clicks and drags. If desired, the current selection may be 
“frozen”, in which case all nodes except the selected one are 
dimmed. 
Zoom, pan, traversal: Dragging the map horizontally pans it, 
whereas a vertical drag zooms in and out. The system detects 
whether the drag is horizontal or vertical, modifies the cursor 



accordingly, and proceeds with the operation. “Optimal zoom” via 
double-click or key press scales the selected node to occupy the 
entire available width (as shown for Jean Johnson in Figure 3), or 
wide enough for it and all its descendents to show faces. 
Search: People can be searched for either globally or contextually 
(i.e., within the subtree rooted at the selected node) by various 
fields such as name or e-mail. Data from mashup sources can also 
be searched (e.g., finding patents whose title contains “speech” for 
a given department). 

3. SCALABLE WEB SOLUTION 
The Java system described in the previous section performs well 
for organizations containing up to around 30,000 people, once the 
organizational data is loaded. Startup time is reasonable for such 
sizes when reading the data from a local file system, but 
assembling and delivering the data from a server takes several 
seconds even for 1000 people. The architecture must therefore be 
rethought for scalability. We proceed to describe our scalable 
Web solution, which is dramatically faster for large organizations. 

3.1 System Architecture and Overview 
Our scalable Web architecture is illustrated in Figure 8. The data 
are maintained in a database organized for maximal efficiency. 
Since the data here exhibit a hierarchical organization, the 
database chosen is an LDAP server, and the data are stored in 
directories corresponding to their place in the hierarchy. For 
efficiency, the data are fetched from the database when the server 
is initialized and thereafter maintained by the server in its 
memory. The data are processed into a set of models ranging from 
an Abstract Data Model to a Session-specific View Model, that is 
ranging from the most general to the most specific, respectively.  
They have been chosen to minimize memory footprint while 
maximizing shared data among users. The single largest model is 
the Abstract Data Model. It contains as much of the data from the 
LDAP server as practicable, and is shared among all clients. 

Further, it is natural-language independent, with language 
constructs represented by tokens that describe the data and related 
fields. The Abstract Data Model is reconstructed periodically as 
changes to the organizational structure are reported. The 
architecture allows the database to be refreshed independently of 
the of the in-memory models. 
The client browser and the application establish a session, during 
which time the client offers the server metadata describing itself: 
its screen size, resolution, and the user’s preferred language. The 
server inspects its internal structures to determine if an 
appropriate Natural-Language-specific Data Model has already 
been constructed , and if not creates and stores it for future 
lookups. This Natural-Language-specific Data Model is not a 
language-specific copy of the Abstract Data Model, but is a filter 
placed before it to replace tokens with translated phrases upon 
access. Natural language-specific data models are shared among 
all relevant clients. This model is of very modest size,requiring 
only about 0.5% of the memory used by the Abstract Data Model. 
The user initiates the process of viewing a hierarchy, or tree, by 
specifying the identity of the individual at the root of the tree. 
This choice is sent to the server which in turn creates an Abstract 
View Model of this tree, representing a view of the tree suitable 
for arbitrarily fine resolution with an arbitrarily large screen size 
of the client. This model contains only information on the 
positions of individual nodes within the view and lacks 
dependence on any particular natural language. It also is of 
modest size. The server temporarily stores this model so that it 
may be shared among all clients viewing a tree from the same root 
in a Least Recently Used (LRU) cache. 
The server uses the information on resolution and screen size 
provided during session creation to construct a Session Specific 
View Model for the client. This is the only model unique to a 
particular client and session. It incorporates knowledge of the 
resolution of the client device, client identity, and other client and 
session-specific data. The server derives the images it sends to the 

Figure 8: Client-Server architecture illustrating Client Artifacts and Server Models. 
 



client directly from this model. Further, the server computes and 
maintains a set of coordinate transformations from the space of 
the client device to that of the session specific view model so that 
the user’s actions, such as the moving of the pointing device, may 
be mapped efficiently to the corresponding element in the Session 
Specific View Model. 
The server performs a series of transformations upon the Session 
Specific View Model while preparing the visual images for the 
client. The first transformation corrects for the limited resolution 
of the client device. The session specific view model may 
represent a large dataset, so large that if it were to be viewed in 
total on the client, the leaf nodes would be smaller than one pixel. 
In order to rectify this, the server combines, or ‘elides’, such leaf 
nodes into larger blocks until they are large enough to be visible.  
Additional metadata may be associated with an individual in the 
data set’s model, such as a picture or label. Of course, it is only 
sensible to attempt to display such metadata if the individual’s 
node as represented in the view model is large enough so that it 
would be visible. The server adds in this metadata for nodes larger 
than a threshold value, thereby reducing unnecessary data 
transmitted. 
The user may not wish to view the entire session specific view 
model as a single image. Indeed, for a large dataset, the resulting 
image may not convey the desired information, much like the case 
of a topographical map: when viewed in its entirety, a book-sized 
map of a large country will not yield much information about 
individual street names in the capital city. We view the width of 
the leaf nodes as an adjustable parameter, affording the user the 
ability to control the level of detail granted to a particular region 
of the view model. The width of the leaf nodes, or zoom-level, 
may assume a continuum of values, not just the discrete set 
familiar from topographical maps. 
The server must take this zoom-level into account in several 
places. First, when the zoom-level is increased, it may no longer 
be necessary to elide leaf nodes as they will now be visible as 
separate entities. More significantly, when the zoom-level is 
sufficiently high, the view model may represent an image many 

times larger than the available area on the client device. 
Delivering a single image of the view model in this case would be 
inefficient and unnecessary. The server prepares, rather, a set of 
tiles, one or more for each level of the hierarchy. This tiling 
scheme is illustrated in Figure 9. Suppose that the user is currently 
interested in a particular region of the view model. The set of tiles 
prepared for this region would comprise tiles covering the region 
and also the regions immediately to the left and right of the region 
of interest. Tiles beyond the perimeter fences are ignored. Only 
the bounding box of the tile need be delivered to the client, along 
with a unique tile key. The client uses this key when constructing 
the URL for fetching the image contained in the tile. Tiles 
extending beyond the left and right perimeter fences are truncated 
by the client at the fences before such a request is placed. The 
server takes this truncation into account while drawing the tile’s 
image. Additionally, no individual in the organization belongs to 
more than one tile, as splitting an individual across tiles could lead 
to a highly disruptive flicker when the tiles are sequentially 
loaded. 
Construction of tiles proceeds in the following manner. First, the 
server computes an offset to the left-hand position of the session-
specific view model so that the region of the user’s interest is 
centered within the viewport; this offset is maintained in the 
session-specific metadata. Next, the server examines each level or 
row of the hierarchy in turn. Beginning with the left-most 
individual in each row and proceeding to the right in sequence 
from sibling to sibling, the server locates the first individual 
located at least partially in the Left Neighbor Region (See Figure 
10). The server then creates a new tile, adding this individual as 
its first member. It adds siblings in turn until it encounters a 
sibling wholly or partially within the Viewport Region. In a 
similar manner, it creates new tiles for other individuals within the 
Viewport and Right Neighbor Regions. The tile is given a set of 
coordinates detailing its width and position of its left edge in the 
client coordinate space. Finally, the tile is given its unique tile key 
In addition to the images prepared for the client, the server 
prepares a limited set of descriptors, delimiting various regions of 
the images. The client has no a priori knowledge of the location 

Figure 9: Example of Tiles for Hierarchy of n Levels 
 

 



of any such regions: it only displays images. First, the server 
prepares descriptors for the several rows of the hierarchy given 
the positions of the tops and bottoms of each row. Next, the server 
creates descriptors of the individuals immediately above, below 
and to the left and right of the region of interest. Note that a single 
visible image may represent many hundreds of individuals. It is 
inefficient for the server to deliver descriptors for all, and also 
unwarranted since the user may only interact with one individual 
at a time. As the user interacts with the image, by moving the 
cursor across the map, he or she may change the region of interest. 
Consequently, the server computes and delivers additional 
descriptors for the new region of interest. 
It is the responsibility of the client application to assemble the set 
of tiles and descriptors it receives into a coherent presentation for 
the user. Further, it maintains a series of linked-lists containing 
the descriptors as they arrive from the server. 
Given the very large available address space of our server, we 
choose to maintain all of the objects described above in the 
server’s memory. This naturally leads to the best performance by 
the server at the cost of a substantial memory footprint. The single 
largest object is the Abstract Data Model. For a dataset of twenty-
four thousand individuals, this requires about 34 megabytes. The 
memory required for any individual user is much smaller, being 
initially about 300 kilobytes and increasing slowly in size to about 
10 megabytes as the user interacts with the system. 

3.2 User Interaction 
When an individual is selected for the first time, the server 
prepares and delivers a set of descriptors of the location of the 
individual within the image, and that of his or her parent, children, 
and right and left siblings. Additional further detailed information 
on the selected individual, such as telephone and office numbers 
are also prepared. The bounding box of the selected individual is 
highlighted with a border of a contrasting color. The metadata 
belonging to this individual and any further detailed information 
is displayed in a separate pane. 
When the user first requests a tree rooted at a particular 
individual, the resulting image is devised exactly to fill the 
client’s viewport. If the requested tree is large, many of the 
individuals as represented in the image may be so small that they 
are practically invisible. This condition may be rapidly altered 
through a zoom operation, consisting in changing the level of 
detail presented to the user. Unlike ZUIs that maintain aspect 
ratio, a zoom within the icicle plot is performed by changing the 
width of a leaf node, as all nodes are of the same height. The level 
of detail relative to the selected individual may be increased --- by 
zooming in --- or decreased --- by zooming out. In either case, a 
new set of tiles is requested from the server, and new set of view 
descriptors are prepared and delivered. The server maintains the 
artifacts associated with the previous zoom level for a 
predetermined time should the user wish to next return to this 
previous level, i.e., ‘undo’ the zoom operation. It should be noted 
that a zoom-operation occurs only the horizontal dimension, with 
the vertical left unchanged. 
Panning consists of dragging the image being viewed to the right 
or to the left. For the first image delivered, crafted exactly to fill 

the viewport, such an operation would not be sensible, and is 
prevented deliberately. However, after a zoom operation, the full 
view may be larger, indeed much larger, than the viewport, should 
the view be displayed in its entirety Through a pan, regions 
beyond the viewport are dragged into view. This operation is 
accomplished very efficiently by dragging the image as a single 
whole, including both the visible parts of the image and the 
invisible parts beyond the borders of the viewport. Note that the 
image may be tiled, but all tiles are dragged simultaneously. 
Further, we choose to allow the user to drag the image at most a 
distance equal to the width of the viewport in a single action. 
Thus, providing a smooth pan operation from the user’s 
perspective requires only that prior to the start of the pan 
operation those tiles be present just to the right and left of the 
viewport. At the conclusion of the pan operation, when say the 
pointing device is released, new tiles are fetched, in anticipation 
of a subsequent pan operation.  
The pan operation has a requirement of some subtlety when the 
user is viewing hierarchical data. If there are any labels, images or 
other metadata associated with a particular individual, particularly 
one near the top the hierarchy and therefore represented by a wide 
node, this information may well have moved beyond the viewport. 
In such cases, the client might request a new tile of the server, as 
detailed below, with the metadata displayed at the appropriate 
new position. To the user, the metadata will appear to ‘snap’ back 
into view. 
This process of adjusting the position of the metadata risks 
triggering a large number of interactions with the server, causing a 
reduction of responsiveness as the server redraws the tiles. The 
adjustment process begins a specific time after the pan has ended; 
if the user initiates another pan before this time elapses, the 
adjustment is postponed until after the end of this new pan, and so 
on. In order to further minimize interactions with the server, once 
the adjustment process starts we classify each tile into one of six 
categories as indicated in Figure 10: Übertile, a tile extending at 
least partially into the left and right neighbor regions; Left 
Neighbor Hidden, a tile contained only partially within the left 
neighbor region; Left Neighbor Visible, a tile contained partially 
within the left neighbor region and partially within the viewport 
region; Central Tile, a tile entirely within the viewport region; 
Right Neighbor Visible, a tile contained partially within the 
Viewport and partially within the Right Neighbor Region; Right 
Neighbor Hidden, a tile only partially contained within the Right 
Neighbor Region; and Hidden, a tile entirely to the right or left of 
the corresponding neighbor region. The metadata of all Übertiles 
may be adjusted by the client alone without help from the server. 
We determine the tiles requiring adjustment in the following 
manner: tiles of types Hidden, Left Neighbor Hidden and Right 
Neighbor Hidden are completely invisible and need not be 
adjusted; a tile of type Central that was of another type before the 
pan operation will require adjustment, as will all tiles of types Left 
Neighbor Visible and Right Neighbor Visible. Existing tiles may 
also need to be adjusted if truncated. To ensure that they not 
extend beyond the left or right boundaries, their widths and 
positions are corrected so that they remain centered within the 
viewport. This correction is accomplished solely by the client. 



3.3 Implementation Setup Details 
The server machine we employ operates under Microsoft 
Windows 2008 Server, a 64 bit operating system affording full 
access to all of the machine’s 24 gigabytes of RAM. We employ 
IBM WebSphere Application Server 6.1, IBM Tivoli Directory 
Server 5.2 and Mozilla Firefox 3.52. Similar results would be 
obtained for other server products, and we have ensured that our 
system performs properly when used with the Microsoft Internet 
Explorer 7 browser as well as WebKit based browsers. 
We make use only of dynamic HTML, Asynchronous JavaScript 
and XML (AJAX), and HTTP servlets composed in the Java 
language. For purposes of this paper, we wished to investigate the 
limits of HTML and AJAX, determining by how much we could 
constrain their resource usage, in the hope of extending this work 
to mobile devices, with very limited memory available and 
without additional runtimes beyond the web browser. For similar 
reasons we avoid reliance on rendering technologies such as 
Adobe Flash or Microsoft SilverLight.  

4. EVALUATION 
4.1 Experience and Feedback 
We collected feedback on OrgMaps through demonstrations of the 
Java prototype inside IBM and also at the Lotusphere conference. 
As the corporate directory is one of the most heavily used 
enterprise applications at IBM, there was clear interest in 
OrgMaps’ ability to provide easily-navigable views and data 
aggregation. People from other types of organizations, such as 
government and education, also saw clear use cases for the 
hierarchical view. The desire of people to easily deploy OrgMaps 
for their organization was an important factor in leading us to 
pursue a Web-based implementation. 
The Java version is feature rich, with many key-based 
interactions. Although impressive for demonstrations, we 
observed that new users found the interface confusing. We took 
this under consideration when building the Web-based version, by 
relying more heavily on mouse interactions and providing an 
easily-accessible “quick help” mechanism. 
The levels in the hierarchy need not be of the same type; they only 
need to support a child-parent relationship. An early prototype of 

OrgMaps was used during the ACM Programming Competition 
2008 with the levels representing continents, countries, 
universities, teams and individual competitors. Participants 
quickly gained top-down insights into the geographic distribution 
of the contest. 
We have made several improvements from user suggestions. One 
suggestion was to keep the faces visible for all qualifying visible 
nodes, even when they are significantly off-center; this had a 
significant impact on the dynamic tiling architecture. Another 
comment was that faces that occupy the entire height of a node 
seem to visually break it into 3 nodes (left, face, right). In 
response, faces are now fully embedded in nodes (with margins 
on top and bottom). Another suggestion was to use heated object 
spectrum for scalar mashups, as an improvement for color-blind 
users. Upon experimenting we decided not to follow this 
suggestion, as the different hues, when combined with the face 
images create too much visual complexity. That said, this raised 
our awareness of the importance of adding user controls for 
tailoring the view. Another user wished to use OrgMaps to glean 
groups in calendar invitations. As a consequence, we recently 
added the capability to visualize a set of people based on their 
names or e-mail addresses to the Web-based version. 
We have recently begun deployment of the new Web-based 
version that is the focus of this paper within IBM. We look 
forward to gaining future insights. 
 

4.2 Performance 
One of the most important considerations for the user of a Web 
application, or any application for that matter, is the amount of 
time required before the application is loaded and ready for 
operation. Another factor is the speed of response to the user. In 
our initial prototype implementations of OrgMaps we used an 
architecture whereby a complete description of the 

 
Figure 10:  Classification of Tiles 

 



organization was delivered to the client browser. The browser was 
then able to perform all actions required by the user, the server 
acting only to provide metadata pertaining to a selected node, as 
needed. The architecture performed well for small organizations, 
but was unsuccessful for large ones. The performance of a client 
system using only HTML and JavaScript is illustrated in Figure 

11. It shows  the times to fetch the organization into the browser, 
the time to eval or transform this into JavaScript objects, and the 
time to layout or create objects in the browser’s DOM to render 
the organization visible. An organization of only 3000 nodes 
requires almost two seconds to be usable in such a scheme. It did 
not prove feasible to view an organization of 20,000 nodes; the 
time to deliver the organization alone rose to over two minutes. 
We tried replacing the use of DOM objects in the browser with a 
Canvas as implemented in Firefox and Safari. This yielded a 
slight improvement in performance in that the layout time was 
reduced, but the dominant eval time was naturally unchanged. 
This is also illustrated in Figure 11. 
Clearly, a different approach was needed to rectify these 
shortcomings for very large organizations. We chose to partition 
the data into a set of models maintained in the server, and a very 
much smaller set delivered to the client, as shown in Figure 8. 
This approach was detailed above in section 3.1. The performance 
is remarkably improved. For example, consider an untiled view; 
here all of the nodes in the organization may be rendered in a 
single image lying within the viewport. The server creates the 
Session Specific View Model, and renders it in an off-screen 
buffer. It only needs to deliver to the client the descriptors of a 
few individuals in the vicinity of the selected individual and a 
view key, used subsequently by the client to fetch this image. The 
eval time has been reduced to an insignificant 3 ms. The time 

needed to fetch an organization is shown in Figure 12. Note here 
that has proven possible to fetch organizations of as many as 
149000 nodes with an acceptable response time of less than one 
second. Note that this time includes the layout time of Figures 11 
since the layout and drawing of the image is performed by the 
server before it returns the set of descriptors to the client. 

Consider next a tiled view, typically created through a process of 
zooming in. Further, assume that such a view was created by 
zooming-in within an untiled view. The times to create and load 
the tiled view are shown in Figure 13 for untiled views of three 
different sizes. The times depend only weakly on the number of 
nodes in the tiled view and depend most strongly on the number 
of individuals represented by the untiled view. This to be 
expected, as the tiled view is derived from the Session Specific 
View Model, which contains the entire contents of the untiled 
view. The choice of a sub-organization of a particular size only 
necessitates the location of a particular region within the Session 
Specific View Model. 
We paid particular attention to the size of the various models on 
the server. Through careful construction it proved possible to limit 
the Abstract Data Model for an organization of twenty-four 
thousand individuals to 34 megabytes; the size of the model is 
linear in the number of individuals. For an organization of similar 
size, the Natural Language Specific Data Model requires roughly 
110 kilobytes. The view models are only created when the user 
initiates a request. The initial, untiled, view of this organization 
requires 330 kilobytes. If the user then zooms in on an individual 
near the top of the organization, creation of the resulting tiled 
view requires an additional six megabytes. 

5. FUTURE WORK 
We plan to extend our work in two significant ways, namely 
building out several additional features and capabilities into 
OrgMaps, and applying these techniques to other applications 
with large datasets. Examples might be applications such as 
representations of product catalogs and educational, 
governmental, and professional organizations. 

As mentioned in the beginning of this paper, one of the motivators 
for moving to the Web is composition of services. We plan 
integrate the OrgMaps service into other applications such as 
mail, calendar and meetings, where recipients and attendees can 
be highlighted to generate an OrgMap view. Further, we plan to 
integrate OrgMaps with collaborative facilities such as instant 
messaging whereby a chat could be initiated when the user clicks 
on a node on the OrgMap. Further, the instant messaging client 
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will be able to indicate the availability of other individuals 
through a visual artifact on the OrgMap itself. 

We had previously implemented several data mashup capabilities 
on the Java applet version. We plan to bring these existing 
capabilities to the Web-based version. Since the mashup is now 
done within the confines of a browser and not a native application, 
issues surrounding privacy and security of data arise. For 
example, if sensitive employee information that is available to a 
manager is mashed up we need to build confidence that the server 
does not have access to the data or if it does, it promptly destroys 
the user’s data when the session terminates. Anonymization or 
hybrid techniques that send only intermediate data forms to the 
server may be necessary to protect the user’s data. 

We intend to improve the user interface to allow for more 
efficient use of the vertical dimension. If an organization is 
composed of many levels, each individual level may be very 
narrow. We have already implemented the ability to reroot the 
view at a lower level in the tree; an individual may be selected 
and a new view requested with this individual as the root. We also 
plan to extend the concept of a zoom to the vertical as well, 
allowing the user to select a subset of the available rows for 
display. 

Some features we plan to consider center around social 
computing. Users may want to know how often and who in the 
enterprise is looking them up. Users may also like to be notified 
when the organizational structure or job responsibility of someone 
they work with changes. By maintaining logs of most popular 
people in the enterprise we can ensure that abstract view models 
for such individuals are prebuilt. Issues surrounding privacy 
clearly arise with such use cases and will have to be addressed on 
a case-by-case basis. In addition, we intend to experiment with 
pre-warming the models when we can predict that some may be 
particularly popular. For example, consider that some individual 
has just published an important paper; it should be possible to 
predict that many users would want to view this individual and his 
or her neighborhood. 

Though memory utilization on the server is not a bottleneck at 
present, we plan to implement several memory management 
schemes to guarantee that the server memory is not exhausted 
after many user’s activities. In particular, we will allow Abstract 
View Models, and Session Specific metadata to expire so as to 
free up memory. Similar techniques will be implemented on the 
client whereby view descriptors will be allowed to expire. As 
more Web applications are deployed, managing the browser cache 
will become an important aspect of controlling the memory usage 
of the browser. Interfaces allowing selective clearing of the cache 
will provide such control. 

Our implementation is now also ready for wider deployments in 
the enterprise. We plan to make it available to every employee at 
IBM. Clearly, this deployment may lead to requests for additional 
features and surface issues that have not arisen hitherto. 

6. RELATED WORK 
Our work is principally differentiated from previous work in that, 
1) it uses a basic Web client with no proprietary technologies, 2) 
all transmitted tiles reflect a specific user session, 3) its fluid, low-
latency response necessitates a tiling of the visualization with 
look-ahead, 4) when look-ahead tiles become the central focus in 
the client viewport, these tiles reflect a constrained-view that is 
not equivalent to the previously focused tiles on a larger viewport, 

and 5) we dynamically classify the view-specific tiles to reduce 
unnecessary communications. 
The use of a range of client-server techniques for rendering 
display content in thin clients with different tradeoffs is old. In 
one extreme, in the VNC and GoToMyPC protocols the server 
sends only images to the thin clients. In the X Windows system, 
application logic runs on the server and rendering is done on the 
thin client (running the X Server), by sending it graphics 
primitives. With Citrix ICA and Microsoft RDP, rendering is done 
on the server and display updates are sent via a rich set of low-
level graphics primitives to the client. SLIM [12] and THINC [1] 
also perform rendering on the server but take an intermediate 
approach to reduce bandwidth and latency by sending only a small 
set of higher-level graphics primitives that are transparently 
mapped to a few simple low-level primitives rendered directly by 
graphics hardware on the client. pTHINC [6] extend THINC to 
PDAs and performs server side scaling of images. However, none 
of the above techniques target specific Web-based applications, 
such as OrgMaps, with the need for dynamic and independent 
rendering tradeoffs within a browser. 
Researchers in 3D computer graphics have encountered the 
challenges of handling large numbers of objects at interactive 
rates. Multi-resolution, view-dependent, and progressive mesh [5] 
representations of 3D models have been used to reduce the 
number of polygons that are sent to the rendering engine. 
Techniques, known as image-based rendering [16], have been 
devised to incrementally update images for small changes in 
viewpoints without having to render the complete model again. 
Chang & Ger [2] apply image-based rendering techniques to 
mobile devices and send rasterized images from a static scene 
with additional single-layered depth images to support occlusion-
correct 3D rotation interaction. While much of this work was 
performed with native applications when the graphical models are 
available locally and not in the context of Web-based applications, 
the ideas are applicable to our problem. We have essentially used 
a hybrid approach that combines object-space and image-space 
rendering techniques. We compute view-dependent tiles in object 
space on the server and send down rendered image tiles to the 
client along with metadata to allow local view updates for pan 
operations without going back to the server. We also deliver the 
metadata progressively. With our design point we did not require 
data compression, which could increase the load on both the client 
and the server. 
Another class of related work is those systems that use servers to 
perform rendering of complex 3D scenes for simple clients. For 
example, Poliakov et al. took this approach because of the lack of 
unified 3D APIs for the Web [11]. These frameworks have 
typically not supported very dynamic and interactive behavior. As 
is done with image-based rendering, the client morphs the cached 
data without a server round-trip to approximate a basic translation 
or rotation of the camera. See [9] for a more exhaustive set of 
related work and for an analysis of methods for remote 
visualization.  

Most similar architectures to ours, such as those that display 
geographic data, allow zoom and pan only on static tiles. While 
Google Maps uses pre-rendered images that are session 
unspecific, Sorokine & Merzliakova [13] performs session-aware 
server-side rendering, but instead output simplified geometric 
primitives to be rendered client-side rendered in the browser. 
They also use limited navigation controls that do not perform 
look-ahead rendering for smooth navigation. D’Ambros et al. uses 
server-backings to tie multiple software engineering systems 



together providing a compact SVG output to the server [3]. They 
note the SVG data and rendering are performance inhibiting. Eick 
et al. [4] also use SVG output to Web clients from multiple server 
backings in a generalized visualization framework. Because of the 
use of SVG rather than rasterized images for the client, their 
performance suffers similarly to our initial client-rendered system.  
Flashproxy [10] uses server proxies to interact with Flash content 
on devices that lack the run-time. They use SWF binary re-writing 
and a custom JavaScript bridge to permit interactions with the 
remotely-hosted SWF using only a basic Web client.  
More widespread availability of WebGL will give browsers 
access to rendering hardware and could alter the tradeoffs that 
have been employed in web-based graphics and visualization. 

Web-based mashups or service compositions was one of our 
motivations to make OrgMaps a Web-based service. Making 
mashups easy is a challenge. In [14], the authors provide a 
programming model for building mashups by end users and 
discuss the implementation and evaluation issues associated with 
end-user mashup programming. In [8] a framework that allows 
users to easily build mashups from within a familiar spreadsheet 
environment by making complex data as first class spreadsheet 
cell values is presented. The Marmite [15] tool for end-user 
programming on the Web works by displaying a linked data flow 
spreadsheet view, letting people see the program as well as the 
data simultaneously.  

7. CONCLUSION 
In this paper we have presented the OrgMaps system for 
interactive mapping of hierarchical organizations. The scalable 
Web architecture we have devised enables OrgMaps to perform 
well even for organizations with hundreds of thousands of people. 
We believe that the architecture and methodology described here 
are broadly applicable to Web-delivered visualization-intensive 
enterprise applications.  
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